IP fragmentation

11:24:00 PM 0 Comments

Fragmentation and reassembly

To make IPv4 more tolerant of different networks the concept of fragmentation was added so that, if necessary, a device could break up the data into smaller pieces. This is necessary when the maximum transmission unit (MTU) is smaller than the packet size.

For example, the maximum size of an IP packet is 65,535 bytes while the typical MTU for Ethernet is 1,500 bytes. Since the IP header consumes 20 bytes (without options) of the 1,500 bytes, 1,480 bytes are left for IP data per Ethernet frame (this leads to an MTU for IP of 1,480 bytes). Therefore, a 65,535-byte data payload (including 20 bytes of header information) would require 45 packets (65535-20)/1480 = 44.27, rounded up to 45.

The reason fragmentation was chosen to occur at the IP layer is that IP is the first layer that connects hosts instead of machines. If fragmentation were performed on higher layers (TCP, UDP, etc.) then this would make fragmentation/reassembly redundantly implemented (once per protocol); if fragmentation were performed on a lower layer (Ethernet, ATM, etc.) then this would require fragmentation/reassembly to be performed on each hop (could be quite costly) and redundantly implemented (once per link layer protocol). Therefore, the IP layer is the most efficient one for fragmentation.

Some say he’s half man half fish, others say he’s more of a seventy/thirty split. Either way he’s a fishy bastard.